Suppression of 4-Coumarate-CoA Ligase in the Coniferous Gymnosperm Pinus radiata

Author:

Wagner Armin1,Donaldson Lloyd1,Kim Hoon1,Phillips Lorelle1,Flint Heather1,Steward Diane1,Torr Kirk1,Koch Gerald1,Schmitt Uwe1,Ralph John1

Affiliation:

1. Scion, Rotorua 3010, New Zealand (A.W., L.D., L.P., H.F., D.S., K.T.); Department of Biochemistry and the Great Lake Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706 (H.K., J.R.); and Federal Research Center for Forestry and Forest Products, 21031 Hamburg, Germany (G.K., U.S.)

Abstract

Abstract Severe suppression of 4-coumarate-coenzyme A ligase (4CL) in the coniferous gymnosperm Pinus radiata substantially affected plant phenotype and resulted in dwarfed plants with a “bonsai tree-like” appearance. Microscopic analyses of stem sections from 2-year-old plants revealed substantial morphological changes in both wood and bark tissues. This included the formation of weakly lignified tracheids that displayed signs of collapse and the development of circumferential bands of axial parenchyma. Acetyl bromide-soluble lignin assays and proton nuclear magnetic resonance studies revealed lignin reductions of 36% to 50% in the most severely affected transgenic plants. Two-dimensional nuclear magnetic resonance and pyrolysis-gas chromatography-mass spectrometry studies indicated that lignin reductions were mainly due to depletion of guaiacyl but not p-hydroxyphenyl lignin. 4CL silencing also caused modifications in the lignin interunit linkage distribution, including elevated β-aryl ether (β-O-4 unit) and spirodienone (β-1) levels, accompanied by lower phenylcoumaran (β-5), resinol (β-β), and dibenzodioxocin (5-5/β-O-4) levels. A sharp depletion in the level of saturated (dihydroconiferyl alcohol) end groups was also observed. Severe suppression of 4CL also affected carbohydrate metabolism. Most obvious was an up to approximately 2-fold increase in galactose content in wood from transgenic plants due to increased compression wood formation. The molecular, anatomical, and analytical data verified that the isolated 4CL clone is associated with lignin biosynthesis and illustrated that 4CL silencing leads to complex, often surprising, physiological and morphological changes in P. radiata.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3