Dynamics of Changing Intercellular CO2 Concentration (ci) during Drought and Determination of Minimum Functional ci

Author:

Brodribb T.1

Affiliation:

1. Department of Plant Science, University of Tasmania, P.O. Box 252C, Tasmania 7001, Australia

Abstract

Abstract Nine conifer species with narrow (<5 mm), single-veined leaves were selected for the purpose of examining changes in intercellular CO2 concentration (ci) during drought. Due to the leaf morphology of the study plants, the confounding effects of nonhomogenous photosynthesis common to most reticulate-veined angiosperms were largely avoided, giving a clear picture of ci dynamics under increasing drought. A characteristic biphasic response was observed in all species, with an initial stomatal control phase resulting in a substantial reduction in ci as stomatal conductance (gs) decreased. As gs reached low levels, a strong nonstomatal limitation phase was observed, causing ci to increase as gs approached a minimum. This nonstomatal phase was linked to a concomitant rapid decrease in the fluorescence parameter quantum efficiency, indicating the onset of nonreversible photoinhibition. The ratio of internal to atmospheric CO2 concentration (ci/ca) decreased from values of between 0.68 and 0.57 in undroughted plants to a minimum, (ci/ca)min, which was well defined in each species, ranging from 0.10 in Actinostrobus acuminatus to 0.36 in Acmopyle pancheri. A high correlation was found to exist between (ci/ca)min and leaf water potential measured at (ci/ca)min. Species developing high maximum intrinsic water use efficiencies (low [ci/ca]min), such as A. acuminatus, did so at lower leaf water potentials (-4.5 MPa) than more mesic species (-1.75 MPa for A. pancheri). It is concluded that in the absence of patchy stomatal closure, (ci/ca)min gives a good representation of the drought tolerance of foliage.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3