HISTONE DEACETYLASE6 Interacts with FLOWERING LOCUS D and Regulates Flowering in Arabidopsis

Author:

Yu Chun-Wei1,Liu Xuncheng1,Luo Ming1,Chen Chiayang1,Lin Xiaodong1,Tian Gang1,Lu Qing1,Cui Yuhai1,Wu Keqiang1

Affiliation:

1. Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan (C.-W.Y., X.L., M.L., C.C., K.W.); Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (M.L.); School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China (X.L.); Southern Crop Pro

Abstract

Abstract Histone acetylation and deacetylation play an important role in epigenetic controls of gene expression. HISTONE DEACETYLASE6 (HDA6) is a REDUCED POTASSIUM DEPENDENCY3-type histone deacetylase, and the Arabidopsis (Arabidopsis thaliana) hda6 mutant axe1-5 displayed a late-flowering phenotype. axe1-5/flc-3 double mutants flowered earlier than axe1-5 plants, indicating that the late-flowering phenotype of axe1-5 was FLOWERING LOCUS C (FLC) dependent. Bimolecular fluorescence complementation, in vitro pull-down, and coimmunoprecipitation assays revealed the protein-protein interaction between HDA6 and the histone demethylase FLD. It was found that the SWIRM domain in the amino-terminal region of FLD and the carboxyl-terminal region of HDA6 are responsible for the interaction between these two proteins. Increased levels of histone H3 acetylation and H3K4 trimethylation at FLC, MAF4, and MAF5 were found in both axe1-5 and fld-6 plants, suggesting functional interplay between histone deacetylase and demethylase in flowering control. These results support a scenario in which histone deacetylation and demethylation cross talk are mediated by physical association between HDA6 and FLD. Chromatin immunoprecipitation analysis indicated that HDA6 bound to the chromatin of several potential target genes, including FLC and MAF4. Genome-wide gene expression analysis revealed that, in addition to genes related to flowering, genes involved in gene silencing and stress response were also affected in hda6 mutants, revealing multiple functions of HDA6. Furthermore, a subset of transposons was up-regulated and displayed increased histone hyperacetylation, suggesting that HDA6 can also regulate transposons through deacetylating histone.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3