Affiliation:
1. Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH–8008 Zurich, Switzerland
Abstract
Abstract
Galactan:galactan galactosyltransferase (GGT) is a unique enzyme of the raffinose family oligosaccharide (RFO) biosynthetic pathway. It catalyzes the chain elongation of RFOs without using galactinol (α-galactosyl-myoinositol) by simply transferring a terminal α-galactosyl residue from one RFO molecule to another one. Here, we report the cloning and functional expression of a cDNA encoding GGT from leaves of the common bugle (Ajuga reptans), a winter-hardy long-chain RFO-storing Lamiaceae. The cDNA comprises an open reading frame of 1215 bp. Expression in tobacco (Nicotiana plumbaginifolia) protoplasts resulted in a functional recombinant protein, which showed GGT activity like the previously described purified, native GGT enzyme. At the amino acid level, GGT shows high homologies (>60%) to acid plant α-galactosidases of the family 27 of glycosylhydrolases. It is clearly distinct from the family 36 of glycosylhydrolases, which harbor galactinol-dependent raffinose and stachyose synthases as well as alkaline α-galactosidases. Physiological studies on the role of GGT confirmed that GGT plays a key role in RFO chain elongation and carbon storage. When excised leaves were exposed to chilling temperatures, levels of GGT transcripts, enzyme activities, and long-chain RFO concentrations increased concomitantly. On a whole-plant level, chilling temperatures induced GGT expression mainly in the roots and fully developed leaves, both known RFO storage organs of the common bugle, indicating an adaptation of the metabolism from active growth to transient storage in the cold.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Reference47 articles.
1. Avigad G, Dey PM (1997) Carbohydrate metabolism: storage carbohydrates. In PM Dey, JB Harborne, eds, Plant Biochemistry. Academic Press, San Diego, pp 143–204
2. Ayre BG, Keller F, Turgeon R (2003) Symplastic continuity between companion cells and the translocation stream: Long-distance transport is controlled by retention and retrieval mechanisms in the phloem. Plant Physiol 131
: 1518–1528
3. Bachmann M, Inan C, Keller F (1995) Raffinose oligosaccharide storage. In MA Madore, WJ Lucas, eds, Carbon Partitioning and Source-Sink Interactions in Plants. American Society of Plant Physiologists, Rockville, MD, pp 215–225
4. Bachmann M, Keller F (1995) Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. Inter- and intracellular compartmentation. Plant Physiol 109
: 991–998
5. Bachmann M, Matile P, Keller F (1994) Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. Cold acclimation, translocation, and sink to source transition: discovery of chain elongation enzyme. Plant Physiol 105
: 1335–1345
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献