Cloning, Functional Expression, and Characterization of the Raffinose Oligosaccharide Chain Elongation Enzyme, Galactan:Galactan Galactosyltransferase, from Common Bugle Leaves

Author:

Tapernoux-Lüthi Esther M.1,Böhm Andreas1,Keller Felix1

Affiliation:

1. Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH–8008 Zurich, Switzerland

Abstract

Abstract Galactan:galactan galactosyltransferase (GGT) is a unique enzyme of the raffinose family oligosaccharide (RFO) biosynthetic pathway. It catalyzes the chain elongation of RFOs without using galactinol (α-galactosyl-myoinositol) by simply transferring a terminal α-galactosyl residue from one RFO molecule to another one. Here, we report the cloning and functional expression of a cDNA encoding GGT from leaves of the common bugle (Ajuga reptans), a winter-hardy long-chain RFO-storing Lamiaceae. The cDNA comprises an open reading frame of 1215 bp. Expression in tobacco (Nicotiana plumbaginifolia) protoplasts resulted in a functional recombinant protein, which showed GGT activity like the previously described purified, native GGT enzyme. At the amino acid level, GGT shows high homologies (>60%) to acid plant α-galactosidases of the family 27 of glycosylhydrolases. It is clearly distinct from the family 36 of glycosylhydrolases, which harbor galactinol-dependent raffinose and stachyose synthases as well as alkaline α-galactosidases. Physiological studies on the role of GGT confirmed that GGT plays a key role in RFO chain elongation and carbon storage. When excised leaves were exposed to chilling temperatures, levels of GGT transcripts, enzyme activities, and long-chain RFO concentrations increased concomitantly. On a whole-plant level, chilling temperatures induced GGT expression mainly in the roots and fully developed leaves, both known RFO storage organs of the common bugle, indicating an adaptation of the metabolism from active growth to transient storage in the cold.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3