Myosin XI-K Is Required for Rapid Trafficking of Golgi Stacks, Peroxisomes, and Mitochondria in Leaf Cells of Nicotiana benthamiana

Author:

Avisar Dror1,Prokhnevsky Alexey I.1,Makarova Kira S.1,Koonin Eugene V.1,Dolja Valerian V.1

Affiliation:

1. Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 (D.A., A.I.P., V.V.P., V.V.D.); and National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20894 (K.S.M., E.V.K.)

Abstract

Abstract A prominent feature of plant cells is the rapid, incessant movement of the organelles traditionally defined as cytoplasmic streaming and attributed to actomyosin motility. We sequenced six complete Nicotiana benthamiana cDNAs that encode class XI and class VIII myosins. Phylogenetic analysis indicates that these two classes of myosins diverged prior to the radiation of green algae and land plants from a common ancestor and that the common ancestor of land plants likely possessed at least seven myosins. We further report here that movement of Golgi stacks, mitochondria, and peroxisomes in the leaf cells of N. benthamiana is mediated mainly by myosin XI-K. Suppression of myosin XI-K function using dominant negative inhibition or RNA interference dramatically reduced movement of each of these organelles. When similar approaches were used to inhibit functions of myosin XI-2 or XI-F, only moderate to marginal effects were observed. Organelle trafficking was virtually unaffected in response to inhibition of each of the three class VIII myosins. Interestingly, none of the tested six myosins appears to be involved in light-induced movements of chloroplasts. Taken together, these data strongly suggest that myosin XI-K has a major role in trafficking of Golgi stacks, mitochondria, and peroxisomes, whereas myosins XI-2 and XI-F might perform accessory functions in this process. In addition, our analysis of thousands of individual organelles revealed independent movement patterns for Golgi stacks, mitochondria, and peroxisomes, indicating that the notion of coordinated cytoplasmic streaming is not generally applicable to higher plants.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3