Functional Characterization of a Silicon Transporter Gene Implicated in Silicon Distribution in Barley

Author:

Yamaji Naoki1,Chiba Yukako1,Mitani-Ueno Namiki1,Feng Ma Jian1

Affiliation:

1. Institute of Plant Sciences and Resources, Okayama University, Kurashiki 710–0046, Japan (N.Y., N.M.-U., J.F.M.); Creative Research Institute, Hokkaido University, Sapporo 001–0021, Japan (Y.C.)

Abstract

Abstract Silicon (Si) is a beneficial element for plant growth. In barley (Hordeum vulgare), Si uptake by the roots is mainly mediated by a Si channel, Low Silicon1 (HvLsi1), and an efflux transporter, HvLsi2. However, transporters involved in the distribution of Si in the shoots have not been identified. Here, we report the functional characterization of a homolog of HvLsi1, HvLsi6. HvLsi6 showed permeability for Si and localized to the plasma membrane. At the vegetative growth stage, HvLsi6 was expressed in both the roots and shoots. The expression level was unaffected by Si supply. In the roots, HvLsi6 was localized in epidermis and cortex cells of the tips, while in the leaf blades and sheaths, HvLsi6 was only localized at parenchyma cells of vascular bundles. At the reproductive growth stage, high expression of HvLsi6 was also found in the nodes. HvLsi6 in node I was polarly located at the transfer cells surrounding the enlarged vascular bundles toward the numerous xylem vessels. These results suggest that HvLsi6 is involved in Si uptake in the root tips, xylem unloading of Si in leaf blade and sheath, and intervascular transfer of Si in the nodes. Furthermore, HvLsi2 was found to be localized at the parenchyma cell layer adjacent to the transfer cells with opposite polarity of HvLsi6, suggesting that the coupling of HvLsi6 and HvLsi2 is involved in the intervascular transfer of Si at the nodes. Si translocated via the enlarged vascular bundles is unloaded to the transfer cells by HvLsi6, followed by HvLsi2 to reload Si to the diffuse vascular bundles, which are connected to the upper part of the plant, especially the panicles, the ultimate Si sink.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3