MEKK1 Is Required for flg22-Induced MPK4 Activation in Arabidopsis Plants

Author:

Suarez-Rodriguez Maria Cristina1,Adams-Phillips Lori1,Liu Yidong1,Wang Huachun1,Su Shih-Heng1,Jester Peter J.1,Zhang Shuqun1,Bent Andrew F.1,Krysan Patrick J.1

Affiliation:

1. Department of Horticulture and Genome Center of Wisconsin (M.C.S.-R., S.-H.S., P.J.J., P.J.K.) and Department of Plant Pathology (L.A.-P., A.F.B.), University of Wisconsin, Madison, Wisconsin 53706; and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (Y.L., H.W., S.Z.)

Abstract

Abstract The Arabidopsis (Arabidopsis thaliana) gene MEKK1 encodes a mitogen-activated protein kinase kinase kinase that has been implicated in the activation of the map kinases MPK3 and MPK6 in response to the flagellin elicitor peptide flg22. In this study, analysis of plants carrying T-DNA knockout alleles indicated that MEKK1 is required for flg22-induced activation of MPK4 but not MPK3 or MPK6. Experiments performed using a kinase-impaired version of MEKK1 (K361M) showed that the kinase activity of MEKK1 may not be required for flg22-induced MPK4 activation or for other macroscopic FLS2-mediated responses. MEKK1 may play a structural role in signaling, independent of its protein kinase activity. mekk1 knockout mutants display a severe dwarf phenotype, constitutive callose deposition, and constitutive expression of pathogen response genes. This dwarf phenotype was largely rescued by introduction into mekk1 knockout plants of either the MEKK1 (K361M) construct or a nahG transgene that degrades salicylic acid. When treated with pathogenic bacteria, the K361M plants were slightly more susceptible to an avirulent strain of Pseudomonas syringae and showed a delayed hypersensitive response, suggesting a role for MEKK1 kinase activity in this aspect of plant disease resistance. Our results indicate that MEKK1 acts upstream of MPK4 as a negative regulator of pathogen response pathways, a function that may not require MEKK1's full kinase activity.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3