Genome-Wide Gene Expression Analysis Reveals a Critical Role for CRYPTOCHROME1 in the Response of Arabidopsis to High Irradiance

Author:

Kleine Tatjana1,Kindgren Peter1,Benedict Catherine1,Hendrickson Luke1,Strand Åsa1

Affiliation:

1. Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S–901 87 Umeå, Sweden

Abstract

AbstractExposure to high irradiance results in dramatic changes in nuclear gene expression in plants. However, little is known about the mechanisms by which changes in irradiance are sensed and how the information is transduced to the nucleus to initiate the genetic response. To investigate whether the photoreceptors are involved in the response to high irradiance, we analyzed expression of EARLY  LIGHT-INDUCIBLE PROTEIN1 (ELIP1), ELIP2, ASCORBATE PEROXIDASE2 (APX2), and LIGHT-HARVESTING CHLOROPHYLL A/B-BINDING PROTEIN2.4 (LHCB2.4) in the phytochrome A (phyA), phyB, cryptochrome1 (cry1), and cry2 photoreceptor mutants and long hypocotyl5 (hy5) and HY5 homolog (hyh) transcription factor mutants. Following exposure to high intensity white light for 3 h (1,000 μmol quanta m−2 s−1) expression of ELIP1/2 and APX2 was strongly induced and LHCB2.4 expression repressed in wild type. The cry1 and hy5 mutants showed specific misregulation of ELIP1/2, and we show that the induction of ELIP1/2 expression is mediated via CRY1 in a blue light intensity-dependent manner. Furthermore, using the Affymetrix Arabidopsis (Arabidopsis thaliana) 24 K Gene-Chip, we showed that 77 of the high light-responsive genes are regulated via CRY1, and 26 of those genes were also HY5 dependent. As a consequence of the misregulation of these genes, the cry1 mutant displayed a high irradiance-sensitive phenotype with significant photoinactivation of photosystem II, indicated by reduced maximal fluorescence ratio. Thus, we describe a novel function of CRY1 in mediating plant responses to high irradiances that is essential to the induction of photoprotective mechanisms. This indicates that high irradiance can be sensed in a chloroplast-independent manner by a cytosolic/nucleic component.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3