Cowpea Chloroplastic ATP Synthase Is the Source of Multiple Plant Defense Elicitors during Insect Herbivory

Author:

Schmelz Eric A.1,LeClere Sherry1,Carroll Mark J.1,Alborn Hans T.1,Teal Peter E.A.1

Affiliation:

1. Center of Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, Florida 32608

Abstract

Abstract In cowpea (Vigna unguiculata), fall armyworm (Spodoptera frugiperda) herbivory and oral secretions (OS) elicit phytohormone production and volatile emission due to inceptin [Vu-In; +ICDINGVCVDA−], a peptide derived from chloroplastic ATP synthase γ-subunit (cATPC) proteins. Elicitor-induced plant volatiles can function as attractants for natural enemies of insect herbivores. We hypothesized that inceptins are gut proteolysis products and that larval OS should contain a mixture of related peptides. In this study, we identified three additional cATPC fragments, namely Vu-GE+In [+GEICDINGVCVDA−], Vu-E+In [+EICDINGVCVDA−], and Vu-In−A [+ICDINGVCVD−]. Leaf bioassays for induced ethylene (E) production demonstrated similar effective concentration50 values of 68, 45, and 87 fmol leaf−1 for Vu-In, Vu-E+In, and Vu-GE+In, respectively; however, Vu-In−A proved inactive. Shortly following ingestion of recombinant proteins harboring cATPC sequences, larval OS revealed similar concentrations of the three elicitors with 80% of the potential inceptin-related peptides recovered. Rapidly shifting peptide ratios over time were consistent with continued proteolysis and preferential stability of inceptin. Likewise, larvae ingesting host plants with inceptin precursors containing an internal trypsin cleavage site rapidly lost OS-based elicitor activity. OS containing inceptin elicited a rapid and sequential induction of defense-related phytohormones jasmonic acid, E, and salicylic acid at 30, 120, and 240 min, respectively, and also the volatile (E)-4,8-dimethyl-1,3,7-nonatriene. Similar to established peptide signals such as systemin and flg22, amino acid substitutions of Vu-In demonstrate an essential role for aspartic acid residues and an unaltered C terminus. In cowpea, insect gut proteolysis following herbivory generates inappropriate fragments of an essential metabolic enzyme enabling plant non-self-recognition.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3