Characterization of Transformed Arabidopsis with Altered Alternative Oxidase Levels and Analysis of Effects on Reactive Oxygen Species in Tissue

Author:

Umbach Ann L.1,Fiorani Fabio1,Siedow James N.1

Affiliation:

1. Developmental, Cell, and Molecular Biology Group, Biology Department, Duke University, Durham, North Carolina 27708–1000

Abstract

Abstract The alternative oxidase (AOX) of plant mitochondria transfers electrons from the ubiquinone pool to oxygen without energy conservation. AOX can use reductant in excess of cytochrome pathway capacity, preventing reactive oxygen species (ROS) formation from an over-reduced ubiquinone pool, and thus may be involved in acclimation to oxidative stresses. The AOX connection with mitochondrial ROS has been investigated only in isolated mitochondria and suspension culture cells. To study ROS and AOX in whole plants, transformed lines of Arabidopsis (Arabidopsis thaliana) were generated: AtAOX1a overexpressors, AtAOX1a anti-sense plants, and overexpressors of a mutated, constitutively active AtAOX1a. In the presence of KCN, leaf tissue of either mutant or wild-type AOX overexpressors showed no increase in oxidative damage, whereas anti-sense lines had levels of damage greater than those observed for untransformed leaves. Similarly, ROS production increased markedly in anti-sense and untransformed, but not overexpressor, roots with KCN treatment. Thus, AOX functions in leaves and roots, as in suspension cells, to ameliorate ROS production when the cytochrome pathway is chemically inhibited. However, in contrast with suspension culture cells, no changes in leaf transcript levels of selected electron transport components or oxidative stress-related enzymes were detected under nonlimiting growth conditions, regardless of transformation type. Further, a microarray study using an anti-sense line showed AOX influences outside mitochondria, particularly in chloroplasts and on several carbon metabolism pathways. These results illustrate the value of expanding AOX transformant studies to whole tissues.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3