Oil Bodies and Oleosins in Physcomitrella Possess Characteristics Representative of Early Trends in Evolution

Author:

Huang Chien-Yu1,Chung Chun-I1,Lin Yao-Cheng1,Hsing Yue-Ie Caroline1,Huang Anthony H.C.1

Affiliation:

1. Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521 (C.-Y.H., C.-I.C., A.H.C.H.); and Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan (C.-Y.H., Y.-C.L., Y.-I.C.H.)

Abstract

Abstract Searches of sequenced genomes of diverse organisms revealed that the moss Physcomitrella patens is the most primitive organism possessing oleosin genes. Microscopy examination of Physcomitrella revealed that oil bodies (OBs) were abundant in the photosynthetic vegetative gametophyte and the reproductive spore. Chromatography illustrated the neutral lipids in OBs isolated from the gametophyte to be largely steryl esters and triacylglycerols, and SDS-PAGE showed the major proteins to be oleosins. Reverse transcription-PCR revealed the expression of all three oleosin genes to be tissue specific. This tissue specificity was greatly altered via alternative splicing, a control mechanism of oleosin gene expression unknown in higher plants. During the production of sex organs at the tips of gametophyte branches, the number of OBs in the top gametophyte tissue decreased concomitant with increases in the number of peroxisomes and level of transcripts encoding the glyoxylate cycle enzymes; thus, the OBs are food reserves for gluconeogenesis. In spores during germination, peroxisomes adjacent to OBs, along with transcripts encoding the glyoxylate cycle enzymes, appeared; thus, the spore OBs are food reserves for gluconeogenesis and equivalent to seed OBs. The one-cell-layer gametophyte could be observed easily with confocal microscopy for the subcellular OBs and other structures. Transient expression of various gene constructs transformed into gametophyte cells revealed that all OBs were linked to the endoplasmic reticulum (ER), that oleosins were synthesized in extended regions of the ER, and that two different oleosins were colocated in all OBs.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3