Affiliation:
1. Center for Simulation and Design Optimization of Mechanical Systems, Department of Mechanical Engineering, The University of Iowa, Iowa City, IA 52242
Abstract
A broadly applicable approach for numerical analysis of the kinematic working capability of mechanisms is presented. Composite workspaces are introduced to represent position and orientation capabilities of mechanisms, both individually and together. Numerical methods for solving systems of kinematic constraint equations, using a moving-frame algorithm and equations that characterize the workspace boundary are developed. Two analytic methodologies, comparison and incorporation methods, are presented to determine whether the workspace of a mechanism satisfies design requirements. An experimental computer program for workspace analysis that incorporates a numerical solver and computer graphics for visualization on a high speed graphics workstation is outlined. The feasible positioning space of a Stewart platform that is subject to orientation constraints is computed, to illustrate the use of this approach.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献