Heat Transfer Due to Natural Convection in a Periodically Heated Slot

Author:

Hossain M. Z.,Floryan J. M.1

Affiliation:

1. e-mail:  Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada

Abstract

Heat transfer resulting from the natural convection in a fluid layer contained in an infinite horizontal slot bounded by solid walls and subject to a spatially periodic heating at the lower wall has been investigated. The heating produces sinusoidal temperature variations along one horizontal direction characterized by the wave number α with the amplitude expressed in terms of a suitably defined Rayleigh number Rap. The maximum heat transfer takes place for the heating with the wave numbers α = 0(1) as this leads to the most intense convection. The intensity of convection decreases proportionally to α when α→0, resulting in the temperature field being dominated by periodic conduction with the average Nusselt number decreasing proportionally to α2. When α→∞, the convection is confined to a thin layer adjacent to the lower wall with its intensity decreasing proportionally to α−3. The temperature field above the convection layer looses dependence on the horizontal direction. The bulk of the fluid sees the thin convective layer as a “hot wall.” The heat transfer between the walls becomes dominated by conduction driven by a uniform vertical temperature gradient which decreases proportionally to the intensity of convection resulting in the average Nusselt number decreasing as α−3. It is shown that processes described above occur for Prandtl numbers 0.001 < Pr < 10 considered in this study.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3