Analyzing Extreme Sea State Conditions by Time-Series Simulation Accounting for Seasonality

Author:

Vanem Erik12

Affiliation:

1. DNV Group Research & Development, Høvik 1363, Norway;

2. University of Oslo Department of Mathematics, , Oslo 0315 , Norway

Abstract

AbstractThis article presents an extreme value analysis on data of significant wave height based on time-series simulation. A method to simulate time series with given marginal distribution and preserving the autocorrelation structure in the data is applied to significant wave height data. Then, extreme value analysis is performed by simulating from the fitted time-series model that preserves both the marginal probability distribution and the autocorrelation. In this way, the effect of serial correlation on the extreme values can be taken into account, without subsampling and de-clustering of the data. The effect of serial correlation on estimating extreme wave conditions have previously been highlighted, and failure to account for this effect will typically lead to an overestimation of extreme conditions. This is demonstrated by this study, which compares extreme value estimates from the simulated times-series model with estimates obtained directly from the marginal distribution assuming that 3-h significant wave heights are independent and identically distributed. A dataset of significant wave height provided as part of a second benchmark exercise on environmental extremes that was presented at OMAE 2021 has been analyzed. This article is an extension of a study presented at OMAE 2022 (OMAE2022-78795) and includes additional preprocessing of the data to account for seasonality and new results.

Funder

Norges Forskningsråd

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of Ship Berthing Operation at Luojing Container Terminal Under Extreme Sea Conditions;American Journal of Traffic and Transportation Engineering;2024-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3