Viscoelasticity and Preconditioning of Rat Skin Under Uniaxial Stretch: Microstructural Constitutive Characterization

Author:

Lokshin Olga1,Lanir Yoram1

Affiliation:

1. Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

Abstract

In spite of impressive progress in developing general constitutive laws for soft tissues, there exists still no comprehensive model valid for any general deformation scheme. The present study focuses on the uniaxial response of the skin as a model for other multifibrous soft tissues. While the skin’s nonlinear viscoelastic constitutive response has been extensively studied and modeled, the phenomena associated with mechanical preconditioning have so far not been dealt with. Yet preconditioning is an inherent response feature in the skin, both in vitro and in vivo. It is hypothesized that by considering the structure of the elastic and collagen fibers and their individual rheological properties, it is possible to develop a reliable general constitutive law for the skin’s uniaxial response. A stochastic hybrid constitutive model was developed based on the collagen and elastic fiber morphologies and their rheological properties. The multiple protocol uniaxial data of Eshel and Lanir (“Effects of Strain Level and Proteoglycan Depletion on Preconditioning and Viscoelastic Responses of Rat Dorsal Skin,” 2001, Ann. Biomed. Eng., 29, pp. 164–172) served to estimate the model’s parameters and to validate its reliability. Parametric investigation was then used to test model parsimony (minimal form) and to elucidate the roles of response mechanism and the relative contribution of each constituent. The model predictions show a very close fit to the data and good predictive capability. The results are consistent with the quasilinear viscoelastic response of both elastic and collagen fibers and are likewise consistent with the notion (supported by published experimental observations) that preconditioning in collagen is probably due to an increase in the fiber reference length and is due to strain softening (Mullins effect) in elastic fibers. The predictions also agree with the observed predominance of elastic fibers at low strains and suggest that as strain increases, collagen becomes predominant, but the effect of elastic fibers is still significant. The parsimony analysis of the 22 model parameters (18 are nonlinear in the model) points to the predominant role of viscoelasticity and preconditioning in both fibers, followed in order of importance by collagen waviness and elastic fiber nonlinearity. A reliable and comprehensive uniaxial constitutive law for the rat skin was developed based on the tissue microstructure and on its constituents’ rheological properties.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference55 articles.

1. Histological Studies of Stressed Skin;Craik

2. Age-Related Changes in the Mechanical Properties of Human Skin;Daly;J. Invest. Dermatol.

3. Structure-Property Relationship of Skin—A Polymer Composite;Wilkes;CRC Crit. Rev. Bioeng.

4. Biomechanical Properties of the Dermis;Daly;J. Invest. Dermatol.

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3