Vibration Analysis in the Presence of Uncertainties Using Universal Grey System Theory

Author:

Liu X. T.1,Rao S. S.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146 e-mail:

2. Fellow ASME Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146 e-mail:

Abstract

The uncertainty present in many vibrating systems has been modeled in the past using several approaches such as probabilistic, fuzzy, interval, evidence, and grey system-based approaches depending on the nature of uncertainty present in the system. In most practical vibration problems, the parameters of the system such as stiffness, damping and mass, initial conditions, and/or external forces acting on the system are specified or known in the form of intervals or ranges. For such cases, the use of interval analysis appears to be most appropriate for predicting the ranges of the response quantities such as natural frequencies, free vibration response, and forced vibration response under specified external forces. However, the accuracy of the results given by the interval analysis suffers from the so-called dependency problem, which causes an undesirable expansion of the intervals of the computed results, which in some case, can make the results unacceptable for practical implementation. Unfortunately, there has not been a simple approach that can improve the accuracy of the basic interval analysis. This work considers the solution of vibration problems using universal grey system (or number) theory for the analysis of vibrating systems whose parameters are described in terms of intervals or ranges. The computational feasibility and improved accuracy of the methodology, compared to interval analysis, are demonstrated by considering one and two degrees-of-freedom (2DOF) systems. The proposed technique can be extended for the uncertainty analysis of any multi-degrees-of-freedom system without much difficulty.

Publisher

ASME International

Subject

General Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3