Permeability and Inertial Coefficients of Porous Media for Air Bearing Feeding Systems

Author:

Belforte G.1,Raparelli T.1,Viktorov V.1,Trivella A.1

Affiliation:

1. Department of Mechanics, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy

Abstract

In porous resistances, Darcy’s law provides a good approximation of mass flow rate when the differences between upstream and downstream pressures are sufficiently small. In this range, the mass flow rates are proportional to the porous resistance’s permeability. For gas bearings, the pressure difference is normally higher, and it is known experimentally that the mass flow rates are lower than would result from Darcy’s law. Forchheimer’s law adds an inertial term to Darcy’s law and, when an appropriate coefficient is selected for this term, provides a good approximation of flow rates for the same applications even with the highest pressure differences. This paper presents an experimental and theoretical investigation of porous resistances used in gas bearing and thrust pad supply systems. The porous resistances considered in the investigation were made by sintering bronze powders with different grain sizes to produce cylindrical inserts that can be installed in bearing supply devices. The paper describes the test setup and experimental results obtained for: (i) mass flow rate through single porous resistances at different upstream and downstream pressures and (ii) mass flow rate and pressure distribution on a pneumatic pad featuring the same porous resistances. The theoretical permeability of the chosen porous resistances was calculated, and the results from setup (i) were then used to obtain experimental permeability and to determine the inertial coefficients. The results, which are expressed as a function of the Reynolds number, confirmed the validity of using Forchheimer’s law. The mass flow rates from setup (ii) were compared to those from setup (i) at the same pressure differentials across the resistance.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3