Molecular Orientation of Polymer Lubricant Films: Its Tribological Consequence

Author:

Gao Chao1,Vo Tam1,Weiss Joel1

Affiliation:

1. Akashic Memories Corporation, 304 Turquoise Street, San Jose, CA 95134

Abstract

The objective of this paper is to demonstrate, from experiments and modeling, how and why molecular orientation of functional end groups of perfluoro-polyether (PFPE) lubricants play an important role in the tribological performance of thin film magnetic disks. These disks typically have an amorphous carbon overcoat upon which a thin lubricant layer is deposited using dip-coating technique. Glancing-angle FTIR (Fourier Transform Infra-Red Spectrometry) is used for measuring molecular orientation of planer functional end groups. A molecular orientation index (MOI) was defined as 1 for randomly oriented functional end groups. The MOI is mathematically derived as 3 (maximum) for lubricant molecules oriented with their functional end groups perpendicular to the surface, and as 0 (minimum) if lubricant molecules oriented with their functional end groups parallel to the surface. The MOI is shown to depend on processing conditions and lubricant film thickness. The tribological performance of the lubricant films was evaluated using drag-mode contact start-stop testing. It was found that wear durability of the lubricant films (~2 nm) with MOI ~ 1.5 is a few times better than those with MOI ~ 0.5 to 1.0. No significant difference in the amount of bonded lubricant film was detected over the range of MOI studied. Nor was there a detectable relationship with hydrophobicity. It was inferred from decreased MOI values due to thermal effects and storage time that a smaller MOI value corresponds to a lower free energy state of the lubricant film. Interestingly, MOI values for bonded lubricant films for Process A are found to be close to 3.0, suggesting that almost all functional end groups in the bonded films are oriented perpendicular to the carbon surface, close to 2.0 for process B, and close to 0 for process C, meaning that almost all functional end groups in the bonded films from process C are oriented parallel to the carbon surface. Relationship between physical/chemical bonding configurations and MOI values are graphically presented in detail. Based on this relation, a simple model on lubricant film structures for the three processes studied is presented. The model MOI values agree very well with measured MOI values as a function of lubricant thickness for all three processes, and the model also appears to account for the observed tribology performance for the MOI values studied (0.5 ~ 1.5).

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3