Numerical Investigation of Conjugate Heat Transfer From a Solid Torus

Author:

Ranjan Kumud12,Mohamad Shafiq1ORCID,Biswal Gloria3,Rout Sachindra Kumar1ORCID,Senapati Jnana Ranjan4ORCID

Affiliation:

1. Department of Mechanical Engineering, C.V. Raman Global University , Bhubaneswar 752054, India

2. C.V. Raman Global University

3. CFD Laboratory, Department of Mechanical Engineering, Indian Institute of Technology , Kharagpur 721302, India

4. Department of Mechanical Engineering, National Institute of Technology , Rourkela 769008, India

Abstract

Abstract The present work comprehensively investigates conjugate heat transfer in a vertically oriented torus through numerical analysis using Ansys Fluent. A solid torus made of aluminum, having a constant surface temperature of 450 K, is allowed to cool using ambient air, whose temperature is 300 K. The combined influence of free convection and radiation heat transfer has been considered here. Independent parameters such as Aspect Ratio (D/d) of 2.5,5,7.5; Rayleigh number for the laminar regime in the range of 103–107 and surface emissivity ranging from 0 to 1 have been selected for the numerical study. Continuity, Momentum, Energy, and Radiation Equations were solved numerically using finite volume method (FVM). Due to the high temperature difference between the ambient air temperature and torus surface (150 K), the thermo-physical properties of the fluid were calculated using a polynomial function of temperature to achieve more accurate results. It has been observed that each parameter has a substantial impact on the overall heat transfer and also, at a higher Rayleigh number of 107 and with an increase in emissivity, both radiation and convection have a considerable role in the overall heat transfer. Temperature and velocity contours have been plotted to visualize the consequences of the parameters on overall heat transfer. Using a nonlinear regression model of the obtained results, a correlation for the overall Nusselt number has been formulated, which can be beneficial to industrial engineers.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3