Thermal Transport in Nanostructured Solid-State Cooling Devices

Author:

Li Deyu1,Huxtable Scott T.2,Abramson Alexis R.3,Majumdar Arun45

Affiliation:

1. Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235

2. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

3. Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106

4. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

5. Materials Science Division, Lawrence Berkeley National Lab, Berkeley, CA 94720

Abstract

Low-dimensional nanostructured materials are promising candidates for high efficiency solid-state cooling devices based on the Peltier effect. Thermal transport in these low-dimensional materials is a key factor for device performance since the thermoelectric figure of merit is inversely proportional to thermal conductivity. Therefore, understanding thermal transport in nanostructured materials is crucial for engineering high performance devices. Thermal transport in semiconductors is dominated by lattice vibrations called phonons, and phonon transport is often markedly different in nanostructures than it is in bulk materials for a number of reasons. First, as the size of a structure decreases, its surface area to volume ratio increases, thereby increasing the importance of boundaries and interfaces. Additionally, at the nanoscale the characteristic length of the structure approaches the phonon wavelength, and other interesting phenomena such as dispersion relation modification and quantum confinement may arise and further alter the thermal transport. In this paper we discuss phonon transport in semiconductor superlattices and nanowires with regards to applications in solid-state cooling devices. Systematic studies on periodic multilayers called superlattices disclose the relative importance of acoustic impedance mismatch, alloy scattering, and crystalline imperfections at the interfaces. Thermal conductivity measurements of mono-crystalline silicon nanowires of different diameters reveal the strong effects of phonon-boundary scattering. Experimental results for Si/SiGe superlattice nanowires indicate that different phonon scattering mechanisms may disrupt phonon transport at different frequencies. These experimental studies provide insight regarding the dominant mechanisms for phonon transport in nanostructures. Finally, we also briefly discuss Peltier coolers made from nanostructured materials that have shown promising cooling performance.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3