On Thermodynamics of Gas-Turbine Cycles: Part 2—A Model for Expansion in Cooled Turbines

Author:

El-Masri M. A.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

While raising turbine inlet temperature improves the efficiency of the gas-turbine cycle, the increasing turbine-cooling losses become a limiting factor. Detailed prediction of those losses is a complex process, thought to be possible only for specific designs and operating conditions. A general, albeit approximate, model is presented to quantify those cooling losses for different types of cooling technologies. It is based upon representing the turbine as an expansion path with continuous, rather than discrete, work extraction. This enables closed-form solutions to be found for the states along the expansion path as well as turbine work output. The formulation shows the key factor in determining the cooling losses is the parameter scaling the ratio of heat to work fluxes loading the machine surfaces. Solutions are given for three cases: internal air-cooling, transpiration air cooling, and internal liquid cooling. The first and second cases represent lower and upper bounds respectively for the performance of film-cooled machines. Irreversibilities arising from flow-path friction, heat transfer, cooling air throttling, and mixing of coolant and mainstream are quantified and compared. Sample calculations for the performance of open and combined cycles with cooled turbines are presented. The dependence and sensitivity of the results to the various loss mechanisms and assumptions is shown. Results in this paper pertain to Brayton-cycle gas turbines with the three types of cooling mentioned. Reheat gas turbines are more sensitive to cooling losses due to the larger number of high-temperature stages. Those are considered in Part 3.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3