Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions

Author:

Haque Md. Azazul1,Miah Md. Abdul Karim2,Hossain Shorab1,Rahman M. Hamidur3

Affiliation:

1. Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

2. Department of Mechanical and Production Engineering (MPE), Islamic University of Technology, Dhaka 1704, Bangladesh

3. Institute of Energy and Environment (IEE), Islamic University of Technology, Dhaka 1704, Bangladesh

Abstract

Abstract Increased temperature of photovoltaic (PV) module decreases its performance; hence, integration of the cooling system is imperative in minimizing this detrimental effect. In this study, passive cooling of PV module with different heatsinks has been simulated by thermal models using ansys steady-state thermal software. The results were based on the effect of convective heat transfer coefficients from 5 to 1000 W/m2K for the temperature reduction of PV module using 19 different heatsinks. Three configurations: flat plate heat spreader, fin-only heatsinks, and fin-flat base plate combined heatsinks, have been studied at 35 °C ambient temperature and 800 W/m2 solar radiation. The result shows that at convective heat transfer coefficient of 10 W/m2K, the combined type model C7, and the fin-only type model B4 demonstrated around 18.94% and 9.36% lower PV cell temperature, respectively, than the flat plate type model A2. Moreover, C7 and B4 models had about 67.5% and 78.03% less material weight than the A2 model, making the heat spreader type least feasible compared with the other two. The temperature contours of the PV cell layer at a given operating condition showed uniform distribution for both flat plate types and combined types. In contrast, the fin-only heatsink configuration illustrated hotspots within the PV cell layer.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3