Application of Quasi-Monte Carlo Method Based on Good Point Set in Tolerance Analysis

Author:

Cao Yanlong12,Yan Huiwen2,Liu Ting2,Yang Jiangxin2

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China;

2. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China e-mail:

Abstract

Tolerance analysis is increasingly becoming an important tool for mechanical design, process planning, manufacturing, and inspection. It provides a quantitative analysis tool for evaluating the effects of manufacturing variations on performance and overall cost of the final assembly. It boosts concurrent engineering by bringing engineering design requirements and manufacturing capabilities together in a common model. It can be either worst-case or statistical. It may involve linear or nonlinear behavior. Monte Carlo simulation is the simplest and the most popular method for nonlinear statistical tolerance analysis. Monte Carlo simulation offers a powerful analytical method for predicting the effects of manufacturing variations on design performance and production cost. However, the main drawbacks of this method are that it is necessary to generate very large samples to assure calculation accuracy, and that the results of analysis contain errors of probability. In this paper, a quasi-Monte Carlo method based on good point (GP) set is proposed. The difference between the method proposed and Monte Carlo simulation lies in that the quasi-random numbers generated by Monte Carlo simulation method are replaced by ones generated by the method proposed in this paper. Compared with Monte Carlo simulation method, the proposed method provides analysis results with less calculation amount and higher precision.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3