Reliability of Bonded Interfaces for Automotive Power Electronics

Author:

DeVoto Douglas1,Paret Paul1,Narumanchi Sreekant1,Mihalic Mark1

Affiliation:

1. National Renewable Energy Laboratory, Golden, CO

Abstract

In automotive power electronics packages, conventional thermal interface materials such as greases, gels, and phase change materials pose bottlenecks to heat removal and are also associated with reliability concerns. There is an industry trend towards high thermal performance bonded interfaces. However, due to coefficient of thermal expansion mismatches between materials/layers and resultant thermomechanical stresses, adhesive and cohesive fractures could occur, posing a problem from a reliability standpoint. These defects manifest themselves in increased thermal resistance in the package. The objective of this research is to investigate and improve the thermal performance and reliability of emerging bonded interface materials for power electronics packaging applications. We present results for thermal performance and reliability of bonded interfaces based on thermoplastic (polyamide) adhesive, with embedded near-vertical aligned carbon fibers, as well as sintered silver material. The results for these two materials are compared to conventional lead-based (Sn63Pb37) bonded interfaces. These materials were bonded between 50.8-mm × 50.8-mm cross-sectional footprint silicon nitride substrates and copper base plate samples. Samples of the substrate/base plate bonded assembly underwent thermal cycling from −40°C to 150°C according to Joint Electron Devices Engineering Council standard Number 22-A104D for up to 2,000 cycles. The dwell time of the cycle was 10 minutes and the ramp rate was 5°C/minute. Damage was monitored every 100 cycles by acoustic microscopy as an indicator of an increase in thermal resistance of the interface layer. The acoustic microscopic images of the bonded interfaces after 2,000 thermal cycles showed that thermoplastics with embedded carbon fibers performed quite well with no defects, whereas interface delamination occurred in the case of sintered silver material. Both these materials showed a superior bond quality as compared to the lead-based solder interface even after 1,000 thermal cycles.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3