Incorporating Density and Temperature in the Stretched Exponential Model for Predicting Stress Relaxation Behavior of Polymer Foams

Author:

Barua Bipul1,Saha Mrinal C.2

Affiliation:

1. School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 e-mail:

2. Mem. ASME School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 e-mail:

Abstract

This paper discusses an approach to incorporate density and temperature terms in the well-known stretched exponential (SE) model for predicting the stress relaxation behavior of polymer foams. We have developed this approach for closed-cell polyurethane foams (PUFs) and verified using experimental data for accuracy. The SE model was first examined using short-term experimental data to predict long-term stress relaxation behavior of PU solid (PUS). The corresponding model parameters were then extracted for PUS and two PUFs with different densities (PU404 and PU415) at three different test temperatures. Finally, an expression was developed in conjunction with the modified Gibson–Ashby relationship and the Arrhenius equation and validated for other foam density (PU420) and test temperatures. The predictions were found to be reasonably good with more than 90% accuracy.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3