OTEC Cold Water Pipe Global Dynamic Design for Ship-Shaped Vessels

Author:

Xiang Sherry1,Cao Peimin1,Erwin Richard1,Kibbee Steve1

Affiliation:

1. SBM Offshore, Houston, TX

Abstract

Ocean Thermal Energy Conversion (OTEC) technology has been considered as a renewable power generation for the tropical oceans where a thermal gradient from subsea to surface are higher than 20°C since 1980. In 2009, the OTEC technical readiness report has identified that semi-submersible, ship-shaped vessel and spar are most feasible to OTEC application. All three are technically mature and well-established floating facilities and have been widely manufactured and operated in offshore industry all over the world. A pilot OTEC development, led by Lockheed Martin (LM) Industry Team, has configured a semi-submersible floating platform. As an alternative design, SBM is developing OTEC designs based on converted ships. Ship shapes provide good access to facilities for practical operation and maintenance activities. Our study focused on demonstrating the feasibility of constructing and installing a 4 meter outer diameter Cold Water Pipe (CWP) based on conventional land-based manufacture of Fiberglass Reinforced Plastics (FRP) followed by installation with SBM marine equipment. Based on insights gained from this exercise, we will continue to develop the installation methods for larger diameter CWPs. The CWP is a key design challenge for OTEC since it must be strong enough to withstand the forces and motions while being light enough to be installed with available marine equipment. This paper focuses on the cold water pipe global dynamic performance hosted by a converted ship for a 10MW OTEC plantship offshore Hawaii. The offshore Hawaii location was selected for purposes of comparison rather than the existence of any specific prospective projects. The CWP is connected to the vessel via a sealed gimbal device that allows the CWP’s angular motions to be decoupled from the vessel. The fundamental understanding of CWP vibrations is discussed. The CWP global dynamic responses to extreme storms and operational fatigue environments are presented. Vortex Induced Vibration (VIV) and other design issues are discussed. The key global design considerations of CWP for the ship-shaped vessel are identified and summarized.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3