Imperfection Insensitivity of Thin Wavy Cylindrical Shells Under Axial Compression or Bending

Author:

Yadav Kshitij Kumar1,Gerasimidis Simos1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, 130 Natural Resources Road, Amherst, MA 01003

Abstract

Abstract The presence of imperfections significantly reduces the load carrying capacity of thin cylindrical shells due to the high sensitivity of thin shells to imperfections. To nullify this unfavorable characteristic, thin cylindrical shells are designed using a conservative knockdown factor method, which was developed by NASA in the late 1960s. Almost all the design codes, explicitly or implicitly, follow this approach. Recently, a new approach has emerged to significantly reduce the sensitivity of thin cylindrical shells. In this approach, wavy cross sections are used instead of circular cross sections for creating thin cylinders. Past studies have demonstrated the effectiveness of wavy cylinders to reduce imperfection sensitivity of thin cylinders under axial compression assuming linear elastic material behavior. These studies used eigenmode imperfections which do not represent realistic imperfections found in cylinders. In this paper, using a realistic dimple-like imperfection, new insights are presented into the response of wavy cylinders under uniform axial compression and bending. Furthermore, the effectiveness of the wavy cylinders to reduce imperfection sensitivity under bending load is investigated assuming a plastic Ramberg–Osgood material model. The effect of wave parameters, e.g., the amplitude and the number of waves, is also explored. This study reveals that wavy thin cylinders are insensitive to imperfections under bending in the inelastic range of the material. It is also found that the wave parameters play a decisive role in the response of thin wavy cylinders to imperfections under bending.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference30 articles.

1. A Theory for the Buckling of Thin Shells;Tsien;J. Aeronaut. Sci.,1942

2. The Buckling of Thin Cylindrical Shells Under Axial Compression;Karman;J. Aeronaut. Sci.,1941

3. The Buckling of Spherical Shells by External Pressure;Karman;J. Aeronaut. Sci.,1939

4. The Stability of Elastic Equilibrium;Koiter,1945

5. Axial Buckling of Pressurized Imperfect Cylindrical Shells;Hutchinson;AIAA J.,1965

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3