A Robust Design Methodology for High-Pressure Compressor Throughflow Optimization

Author:

Lecerf N.1,Jeannel D.1,Laude A.2

Affiliation:

1. Snecma Moteurs, Moissy-Cramayel, France

2. Hurel-Hispano

Abstract

Reducing costs and development times are two of the main challenges for aircraft engines manufacturers. Analysis shows that the main troubles encountered during the industrialization phase are due to choices made during the first steps, such as the preliminary design of the compressor throughflow (flowpath and velocity triangles). Therefore, constraints and needs from the later phases have to be taken into account as early as possible. A deterministic optimization method for automated compressor throughflow design has been developed to achieve these objectives, improving efficiency and surge margin while modifying the design parameters. Nevertheless, variability between the theoretical geometry and the actual one may occur because of the manufacturing process or the damages encountered during the engine life cycle. Depending on their magnitude, these differences can affect the engine performance. To consider these random phenomena from the design step, the deterministic optimization is coupled with a probabilistic approach, based on a robust design methodology which aims at guarantee the engine performance despite geometrical variability. This article deals with geometrical robustness. It presents a robust design methodology and introduces a capability function used to optimize the outputs of a compressor model while minimizing their standard deviation. The model has two kinds of inputs: the design factors, which are known by both designer and manufacturer, and the noise factors, that are just known by their mean value and their standard deviation. As robust design requires a large number of calculations, it is interesting to work with an approximated physical model such as a response surface, generated through the computation of a suitable design of experiments. This method has been successfully applied to the design of a Snecma Moteurs high-pressure compressor.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3