Affiliation:
1. Department of Industrial Engineering, The Pennsylvania State University, University Park, Pa.
Abstract
A learning model of tool wear based on Bayesian statistical methods provides a means for regulating the optimum cutting conditions as periodic sampling data on flank wear become available during production under adaptive control. The sampling process is used to estimate the current parameters of the wear process, and by incorporating this updated information into the machining economics model, an optimal a posteriori program of cutting conditions can be determined to best match the current conditions of the tool, workpiece, and machine. The application of the Bayesian learning model is illustrated for a basic turning operation with minimum cost as the optimizing criterion.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献