High Speed Single Cavity Rig With Axial Throughflow of Cooling Air: Rig Structure and Periphery

Author:

Diemel Eric1,Odenbach Stefan1,Uffrecht Wieland1,Villazon Jose Rey2,Valencia Antonio Guijarro2,Reinecke Mike2

Affiliation:

1. Technische Universität Dresden, Dresden, Germany

2. GE Aviation, Munich, Germany

Abstract

Abstract Appropriate understanding of heat transfer and temperature distribution of gas-turbine compressor disks is very important for mechanical rotor design. Accurate prediction of disk metal temperatures is key to ensure safe operation and furthermore rotor tip clearances has a significant influence on the compressor efficiency. Despite great improvements in the prediction of fluid motion and heat transfer in complex systems, the increasingly demanding requirement for more efficient compressors demands more accurate understanding of the flow around those disks. Therefore, a research rig has been designed and built which has thermal and aerodynamic analogy to high pressure compressor rotor cavities in gas-turbine engines aiming at gathering data at engine representative conditions. The rig consists of two disks, a cylindrical shroud and a stationary inner shaft. To simulate those conditions a heating and chilling module has been designed to enable the emulation of disk thermal gradients. For changing the operating point a flow delivery system with ten valves and two air heaters will be used. By measuring the radial pressure distribution inside the cavity it is possible to calculate the tangential velocity of the fluid core. In addition to that the disc and fluid temperature inside the cavity will be measured by a telemetry system, as well as the inlet and outlet condition of the fluid entering and leaving the cavity.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3