Flow Characteristics in Aeroengine Bearing Chambers With Shallow Sump

Author:

Chandra Budi1,Simmons Kathy2

Affiliation:

1. University of the West of England, Bristol, UK

2. University of Nottingham, Nottingham, UK

Abstract

Abstract In an aeroengine oil is supplied to the bearings for lubrication and cooling. Subsequently, it creates a two phase flow environment in the bearing chamber that may contain droplets, mist, wall film, ligaments, froth or foam and liquid pools. After the oil has served its purpose, it is scavenged out of the chamber and recycled. Effective oil removal is essential as unnecessary working of the oil can lead to excessive heat generation in the chamber, increased risk of seal leakage, and reduced overall efficiency. However the task of oil removal is not trivial as it is entrained in a highly rotating environment induced by the rotating shafts. Shallow sump variants were investigated using a design of experiments approach. A previous publication discussed the performance of the sump variants using categorization of visualization data relating to the extent of hydraulic uplift in the sump region. Hydraulic uplift was found to be directly related to residence volume in the gravity dominated wall film flow regime. Furthermore, it was found that the flow condition factors such as flow regime and shaft speed are the dominating factors affecting the hydraulic uplift severity. In terms of the geometrical factors, a deeper sump can reduce the hydraulic uplift severity. This reinforces the importance of sump depth, as a deeper sump tends to have lower residence volume but is often not implemented due to space constraint. This paper presents further results from the experimental study on the shallow sump variants in terms of some important flow characteristics such as upstream flow detachment, upstream flow dry-out, and secondary flow. In addition to the geometrical factors, the flow condition factors such as the flow regime defined by how oil enters the chamber, flow rate, shaft speed, and scavenge ratio were investigated. Upstream flow detachment was observed only for cases where airborne droplets were present and at higher shaft speeds, also known as the windage dominated airborne droplets flow regime. It was noted that the geometrical factors are less important than the flow condition factors for upstream flow detachment as well as upstream flow dry-out and secondary flow.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3