The Effects of Low-Energy-Nitrogen-Ion Implantation on the Tribological and Microstructural Characteristics of AISI 304 Stainless Steel

Author:

Wei R.1,Shogrin B.1,Wilbur P. J.1,Ozturk O.2,Williamson D. L.2,Ivanov I.3,Metin E.4

Affiliation:

1. Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523

2. Department of Physics, Colorado School of Mines, Golden, CO 80401

3. Charles Evans & Assoc., Redwood City, CA 94063

4. Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801

Abstract

The effects of nitrogen implantation conditions (ion energy, dose rate, and processing time) on the thickness and wear behavior of N-rich layers produced on 304 stainless-steel surfaces are examined. Surfaces implanted at elevated temperatures (≈400°C) with 0.4 to 2 keV nitrogen ions at high dose rates (1.5 to 3.8 mA/cm2) are compared to surfaces implanted at higher energies (30 to 60 keV) and lower current densities (0.1 to 0.25 mA/cm2). The most wear-resistant surfaces are observed when the implanted-ion energy is near 1 keV and the dose is very large (> 2 × 1019 ions/cm2). Typically, surfaces implanted under these optimum conditions exhibit load-bearing capabilities at least 1000 times that of the untreated material. Some comparisons are also made to surfaces processed using conventional plasma-nitriding. Samples treated using either process have wear-resistant surface layers in which the nitrogen is in solid solution in the fcc phase. It is argued that the deep N migration (> 1 μm) that occurs under low-energy implantation conditions is due to thermal diffusion that is enhanced by a mechanism other than radiation-induced vacancy production.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3