Fleet Monitoring and Diagnostics Framework Based on Digital Twin of Aero-Engines

Author:

Zaccaria Valentina1,Stenfelt Mikael1,Aslanidou Ioanna1,Kyprianidis Konstantinos G.1

Affiliation:

1. Mälardalen University, Västerås, Sweden

Abstract

Monitoring aircraft performance in a fleet is fundamental to ensure optimal operation and promptly detect anomalies that can increase fuel consumption or compromise flight safety. Accurate failure detection and life prediction methods also result in reduced maintenance costs. The major challenges in fleet monitoring are the great amount of collected data that need to be processed and the variability between engines of the fleet, which requires adaptive models. In this paper, a framework for monitoring, diagnostics, and health management of a fleet of aircrafts is proposed. The framework consists of a multi-level approach: starting from thresholds exceedance monitoring, problematic engines are isolated, on which a fault detection system is then applied. Different methods for fault isolation, identification, and quantification are presented and compared, and the related challenges and opportunities are discussed. This conceptual strategy is tested on fleet data generated through a performance model of a turbofan engine, considering engine-to-engine and flight-to-flight variations and uncertainties in sensor measurements. Limitations of physics-based methods and machine learning techniques are investigated and the needs for fleet diagnostics are highlighted.

Publisher

American Society of Mechanical Engineers

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and application of the gas turbine performance monitoring system based on digital twins;Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024);2024-07-11

2. TWIN-ADAPT: Continuous Learning for Digital Twin-Enabled Online Anomaly Classification in IoT-Driven Smart Labs;Future Internet;2024-07-04

3. The Usage of Artificial Intelligence in Manufacturing Industries;Advances in Computational Intelligence and Robotics;2024-05-10

4. Digital twin in the power generation industry;JMST Advances;2024-02-29

5. Digital Twin Models: Functions, Challenges, and Industry Applications;IEEE Journal of Radio Frequency Identification;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3