Study of Peripheral Milling of Magnesium Matrix Composite

Author:

Anandan Nishita1,Ramulu M.1

Affiliation:

1. University of Washington, Seattle, WA

Abstract

Abstract An experimental investigation on peripheral milling of magnesium composite AZ91 magnesium matrix with 15 vol.% SiC particles of a nominal 3–4 μm was performed to study the cutting forces generated, surface finish of the machined surface and the tool wear as a function of cutting conditions. The feed force was found to increase with feed and spindle speed, while the thrust forces were found to increase with feed and no significant trend was observed with the increase in spindle speed. The feed and spindle speed were varied from 0.2 to 1 mm/rev and 1000 to 4000 rpm respectively. The length of cut was kept constant at 32 mm. The tool wear was measured along the helical cutting edge and the wear mechanism was studied through SEM images of the cutting edge. A tapered wear geometry was observed which can be attributed to the varying chip load along the helix. Abrasive wear was identified as the main wear mechanism. Micro-ploughing and micro-pitting were also observed. The extent of micro-ploughing and micro-pitting depended on the cutting condition. When the impact on the cutting edge was high during aggressive machining condition of 0.5 mm/rev and 4000 rpm, extensive micro-pitting and micro-ploughing were observed on the flute. The cutting edges appeared to be smooth due to repeated rubbing against SiC particles and wear debris.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3