Performance Investigation on Single Phase Pulse Detonation Engine Using Computational Fluid Dynamics

Author:

Debnath Pinku1,Pandey K. M.1

Affiliation:

1. National Institute of Technology, Silchar, AS, India

Abstract

Pulse detonation engines (PDEs) are new concept propulsion technologies and unsteady propulsion system that operates cyclically and typically consists of four stages, filling of fuel/air mixture, combustion, blow down and purging. Out of these four processes, combustion is the most crucial one since it produces reliable and repeatable detonation wave. Detonation is a supersonic combustion process which is essentially a shock front driven by the energy release from the reaction zone in the flow right behind it. It is based on supersonic mode of combustion and causes rapid burning of a fuel-air mixture, typically tens of thousands of times faster than in a flame, that utilize repetitive detonations to produce thrust or power. PDE offers the potential to provide increased performance while simultaneously reducing engine weight, cost, and complexity relative to conventional propulsion systems currently in service. It has the potential to drastically reduce the cost of orbit transfer vehicle system as well as space vehicle attitude control system and can be used for wide range of military, civil and commercial applications. Due to its obvious advantages, worldwide attention has been paid to the scientific and technical issues concerning PDE. The present study deals with the convergence and divergence nozzle effects on specific thrust and pressure of Pulse Detonation Engine (PDE) using computational fluid dynamics (CFD). Pulse Detonation Engine having 88.3cm length and 9.5cm diameter combustion chamber, convergence nozzle, detonation tube and divergence nozzle were design in Gambit 2.3.16. FLUENT 6.3 predict the flow physics of pressure and specific thrust (Fs), increase in divergence nozzle compared to convergence nozzle and specific thrust of detonation tube was changed with the change of flight Mach number. A three dimension computational unstructured grid was developed which gives the best meshing accuracy as well as computational results. RNG k-ε turbulence model was used for the mass flow rate, pressure and velocity contours analysis with standard wall function.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3