Separation of Radiative and Convective Wall Heat Fluxes Using Thermal Infrared Measurements Applied to Flame Impingement

Author:

Gomez-Ramirez David1,Ekkad Srinath V.1,Lattimer Brian Y.1,Moon Hee-Koo2,Kim Yong2,Srinivasan Ram2

Affiliation:

1. Virginia Tech, Blacksburg, VA

2. Solar Turbines, Inc., San Diego, CA

Abstract

Flame impingement is critical for the processing and energy industries. The high heat transfer rates obtained with impinging flames are relevant in metal flame cutting, welding, and brazing; in fire research to understand the effects of flames on the structures of buildings; and in the design of high temperature combustion systems. Most of the studies on flame impingement are limited to surfaces perpendicular to the flame, and measurements are often performed using heat flux sensors (such as Schmidt-Boelter heat flux transducers) at discrete locations along the target surface. The use of in-situ probes provides high accuracy but heavily limits the spatial resolution of the measurement. Moreover, flame radiation effects are often neglected, due to the small contribution in non-luminous flames, and the entire heat flux to the target is assumed to be due to convection. Depending on the character of the flame and the impingement surface, local radiative heat transfer can be significant, and the contribution of radiation effects has not been fully quantified. This study presents a novel non-intrusive method with high spatial resolution to simultaneously determine the convective and radiative heat fluxes at a wall interacting with a flame or other high temperature environment. Two initial proof of concept experiments were conducted to evaluate the viability of the technique: one consisting of a flame impinging normal to a target and another with a flame parallel to the target surface. Application of the methodology to the former case yielded a stagnation convective heat flux in the order of 106kWm−2 that decreased radially away from the stagnation point. The radiation field for the direct impingement case accounted on average for 4.4% of the overall mean heat flux. The latter experiment exemplified a case with low convective heat fluxes, which was correctly predicted by the measurement. The radiative heat fluxes were consistent between the parallel and perpendicular cases.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3