Bioinspired Jumping Mobility Concepts for Rough Terrain Mobile Robots

Author:

Gilani Omar1,Ben-Tzvi Pinhas1

Affiliation:

1. George Washington University, Washington, DC

Abstract

Mobile robots face great challenges in terms of mobility when traversing rough terrain, especially obstacle filled environments. Current terrestrial locomotion mechanisms such as wheels, tracks, and legs, face difficulties surmounting obstacles equal to or greater than their own height. This is especially true for smaller robots. In this respect, bioinspired approaches offer some solutions. Some insects in particular tackle rough terrain locomotion by performing high powered jumps. Their morphology has evolved to create specialized energy storage structures, and their hind legs have adapted to provide improved mechanical leverage. This paper investigates jumping as employed by insects and develops principles pertinent for the design of a jumping robotic system. A mathematical model depicting bipedal jumping is presented. The model includes mechanical energy storage elements in the form of springs for the purpose of assessing jumping locomotion for robotic applications. This model will assist in analyzing jumping locomotion and presenting some insights, as well as rough dimensioning of system parameters to achieve desired jumping performance.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3