Driveline Dynamics Simulation and Analysis of the Dry Clutch Friction-Induced Vibrations in the Eek Frequency Range

Author:

Senatore Adolfo1,Hochlenert Daniel2,D’Agostino Vincenzo1,von Wagner Utz2

Affiliation:

1. University of Salerno, Fisciano, SA, Italy

2. Technische Universität Berlin, Berlin, Germany

Abstract

Vibrations that arise during the slip phase of the clutch in the driveline of a motor vehicle yield to poor ride quality and result in discomfort and noise. The control systems in modern automated manual transmission systems couldn’t provide good improvement of vehicle longitudinal dynamics during gearshifts without a deep knowledge of the driveline model and its stiffness and damping parameters, along with the frictional conjunction between its main subparts. In this paper an original 5-degree of freedom mathematical model of the dry clutch mechanism is presented with the intention of studying the excitation in a passenger car driveline of torsional vibration by frictional actions during the slip phase of the engagement. Furthermore, the analysis aims to deepen about the coupling between pressure plate wobbling and torsional motions in order to improve the current understanding of the excitation mechanisms in the frequency region of the so-called “eek noise”, 250–500 Hz. The results of this work substantiate that enhancing of torsional motion in the characteristic frequency range of the “eek sound” occurs even regardless of the rigid wobbling motion of the pressure plate and underline the need to include the non-linear characteristic of the clutch cushion spring in the simulation of such a phenomenon.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3