Low Concentrating Photovoltaic Geometry for Retrofitting Onto European Building Stock

Author:

Parupudi Ranga Vihari11,Redpath David2,Singh Harjit1,Jalali Mohammad Reza11,Kolokotroni Maria1

Affiliation:

1. Brunel University London Institute of Energy Futures, College of Engineering, Design and Physical Sciences, , Uxbridge UB8 3PH , UK

2. Queens University Belfast School of Chemistry and Chemical Engineering, , Belfast BT7 1NN , UK

Abstract

Abstract The most appropriate low concentrating photovoltaic (LCPV) technology suitable for European buildings located in mid-high latitudes under both maritime and continental climatic conditions has been identified as the asymmetric compound parabolic concentrator (ACPC). To date, there is no published experimental data at different latitudes on the long-term performance of these systems at these latitudes nor how location would modify the optical characteristics of deployed systems. Previous theoretical research by the authors has demonstrated the superiority of the ACPC with this additional work experimentally confirming the robustness of the design. To investigate how seasonal and locational variations affect their measured technical performance two identical ACPC-LCPVs were installed, instrumented, and monitored at two different climatic locations (Uxbridge, UK, and Vevey, Switzerland) from May 2020 to September 2020. A valid comparative performance investigation characterizing two geometrically equivalent ACPC-based LCPV systems using real-life experimental data collected is presented in this paper. Locations at higher latitudes experience greater transverse angles more frequently compared to locations nearer the equator making ACPC geometries more appropriate than symmetrical concentrator configurations for building retrofit. This is shown in this paper over a latitudinal expanse of 31.35 deg for four separate locations; Tessalit (20.19 deg N, 1.00 deg E; Mali), Timimoun (28.03 deg N, 1.65 deg E; Algeria), Uxbridge (51.54 deg N, 0.48 deg E, UK), and Vevey (46.6 deg N, 6.84 deg E, Switzerland).

Funder

British Council

Department for Business, Innovation and Skills

Directorate-General for Research and Innovation

Publisher

ASME International

Reference30 articles.

1. Review of Building Energy Performance Certification Schemes Towards Future Improvement;Li;Renewable Sustainable Energy Rev.,2019

2. Renewables 2021 Global Status Report;REN 21,2021

3. The Dynamics of Solar PV Costs and Prices as a Challenge for Technology Forecasting;Candelise;Renewable Sustainable Energy Rev.,2013

4. Solar Cell Spectral Response Measurement Errors Related to Spectral Band Width and Chopped Light Waveform;Field,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3