Rheological Properties and Ignition and Combustion Characteristics of Biochar–Algae–Water Slurry Fuels

Author:

Zhu Mingming1,Zhang Zhezi1,Liu Pengfei1,Zhang Dongke1

Affiliation:

1. Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia e-mail:

Abstract

This study examined the rheological properties, ignition, and combustion characteristics of biochar–algae–water (BAW) slurry fuels. A pine sawdust biochar with a median particle size (D50) of approximately 12 μm and algae Chlorella vulgaris in dry powder form with D50 of approximately 19 μm were used. The BAW slurries with a constant solid loading of 40 wt % and algae/biochar ratio varying from 0 to 0.2 by weight were prepared. The apparent viscosity was measured using a Haake VT550 cone-and-plate viscometer. The stability of the slurries was characterized using a “drop rod” method. Ignition and combustion characteristics of the slurries were studied using a suspended single-droplet technique. A single droplet of a slurry fuel with a diameter ranging from 0.5 mm to 1.5 mm was suspended on a silicon carbide fibre and burned in air at 1023 K in an electrically heated tube furnace. The ignition and combustion processes of the droplet were recorded using a CCD camera at 200 fps. The ignition delay time, burnout time, and burning rate were determined. The BAW slurries showed shear-thinning flow behavior. The slurries had higher viscosity and greater stability at higher algae proportion in the solid. The ignition and combustion process of BAW slurries followed the sequence of water evaporation, devolatilization, ignition, and combustion of the solid residue. The combustion of the residual solid was diffusion controlled under the experimental conditions and the burning rates of the BAW slurry droplets ranged from 0.15 to 0.25 mm2 s−1.

Funder

Australian Research Council

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference32 articles.

1. Biomass pyrolysis: a state-of-the-art review

2. Gasification of Biomass to Second Generation Biofuels: A Review;ASME J. Energy Resour. Technol.,2012

3. Combined Heat and Power (CHP) Generation Using Gas Engines Fueled With Pyrolysis Gases,2015

4. Review of Fast Pyrolysis of Biomass and Product Upgrading;Biomass Bioenergy,2012

5. Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation;ASME J. Energy Resour. Technol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3