Engineering-Guided Deep Learning of Melt-Pool Dynamics for Additive Manufacturing Quality Monitoring

Author:

Zhang Siqi1,Yang Hui1,Yang Zhuo2,Lu Yan2

Affiliation:

1. The Pennsylvania State University Industrial and Manufacturing Engineering, , University Park, PA 16801

2. National Institute of Standards and Technology System Integration Division, , Gaithersburg, MD 20899

Abstract

Abstract Additive manufacturing (AM) fabricates three-dimensional parts via layer-by-layer deposition and solidification of materials. Due to the complexity of this process, advanced sensing is increasingly employed to facilitate system visibility, leading to a large amount of high-dimensional and complex-structured data. While deep learning brings attractive characteristics for data-driven process monitoring and quality prediction, it is currently limited in the ability to assimilate engineering knowledge and offer model interpretability for understanding process–quality relationships. In addition, due to spatiotemporal correlations in AM, a melt-pool anomaly observed during fabrication is not always indicative of abnormal quality characteristics. There is a pressing need to go beyond pointwise analysis of melt pools and consider spatiotemporal effects for quality analysis. In this paper, we propose a novel feature learning framework guided by engineering knowledge for AM quality monitoring. First, engineering knowledge is integrated with deep learning to delineate various sources of process variations and extract melt-pool features that reflect quality-related relationships. Second, a 3D neighborhood model is designed to characterize spatiotemporal variations of melt pools based on their domain-informed features. The resulting 3D neighborhood profiles enable us to go beyond pointwise analysis of melt pools for capturing process–quality relationships. Finally, we built a regression model to predict internal density variations using 3D neighborhood profiles. Our experiments demonstrate that the proposed framework significantly outperforms traditional hand-crafted method and black-box learning in both the ability to provide quality-related features and predict internal density variations.

Funder

National Institute of Standards and Technology

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3