Convergence Acceleration of Favre-Averaged Non-Linear Harmonic Method

Author:

Wang Feng1,Weber Kurt2,Radford David34,di Mare Luca1,Meyer Marcus5

Affiliation:

1. University of Oxford Oxford Thermo-Fluids Institute, Department of Engineering Science, , Oxford OX1 2JD , UK

2. Rolls-Royce Corporation Compressor Aero Method, , Indianapolis, IN 46225

3. Rolls-Royce (United Kingdom) Noise Engineering, , Derby DE24 8JY , UK

4. Rolls-Royce plc Noise Engineering, , Derby DE24 8JY , UK

5. Rolls-Royce Deutschland Ltd & Co KG CFD Methods, , Brandenburg 15827 , Germany

Abstract

Abstract This paper develops a numerical procedure to accelerate the convergence of the Favre-averaged non-linear harmonic (FNLH) method. The scheme provides a unified mathematical framework for solving the sparse linear systems formed by the mean flow and the time-linearized harmonic flows of FNLH in an explicit or implicit fashion. The approach explores the similarity of the sparse linear systems of FNLH and leads to a memory-efficient procedure, so that its memory consumption does not depend on the number of harmonics to compute. The proposed method has been implemented in the industrial computational fluid dynamics solver Hydra. Three test cases are used to conduct a comparative study of explicit and implicit schemes in terms of convergence, computational efficiency, and memory consumption. Comparisons show that the implicit scheme yields better convergence than the explicit scheme and is also roughly 7–10 times more computationally efficient than the explicit scheme with four levels of multigrid. Furthermore, the implicit scheme consumes only approximately 50% of the memory required by the explicit scheme with four levels of multigrid. Compared with the full-annulus unsteady Reynolds-averaged Navier–Stokes simulations, the implicit scheme produces comparable results to URANS with computational time and memory consumption that are two orders of magnitude smaller.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3