Evolution of Turbulence and Its Modification by Axial Casing Grooves in a Multi-Stage Axial Compressor

Author:

Koley Subhra Shankha1,Saraswat Ayush2,Katz Joseph2

Affiliation:

1. Johns Hopkins University Department of Mechanical Engineering, , 217 Latrobe Hall, 3400 North. Charles Street, Baltimore, MD 21218

2. Johns Hopkins University Department of Mechanical Engineering, , 217 Latrobe Hall, 3400 North, Charles Street, Baltimore, MD 21218

Abstract

Abstract This experimental study examines the evolution of turbulence across an axial compressor and its modification by semicircular axial casing grooves (ACGs) at the pre-stall and near the best efficiency (BEP) flowrates. The turbulence is highly anisotropic and spatially inhomogeneous, with each normal Reynolds stress component evolving differently. Most of the observed trends can be explained by examining the dominant production rate terms. At the pre-stall flowrate, the turbulence increases significantly upon entering the rotor with peak RMS values of axial velocity fluctuations reaching as high as 71% of the mean axial velocity. The region with elevated turbulent kinetic energy (TKE) covers 30% of the outer span near the rotor leading edge, expanding to 50% near the trailing edge. While the TKE in the outer span decays rapidly in the stator, the local turbulence production persists in the stator blade boundary layer. By stabilizing and homogenizing the flow, the ACGs reduce the turbulence production, hence the TKE, in the rotor and the stator. The only exception is an increase in turbulence in the region dominated by groove–passage flow interactions. Near BEP, the TKE is much lower everywhere, except for the region influenced by the outflow from grooves. Downstream of the rotor and the stator, the turbulence level with or without ACGs are similar. The large variations in the magnitude and even the sign of the measured eddy viscosity highlight the extreme non-equilibrium conditions over the entire machine, questioning the fundamental assumptions of local equilibrium in eddy viscosity-based Reynolds stress models.

Funder

National Aeronautics and Space Administration

Office of Naval Research

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3