A Study on Fundamental Combustion Properties of Trimethyl Orthoformate: Experiments and Modeling

Author:

Ngũgĩ John Mbũrũ1,Richter Sandra1,Braun-Unkhoff Marina1,Naumann Clemens1,Riedel Uwe2

Affiliation:

1. German Aerospace Center (DLR), Institute of Combustion Technology , Pfaffenwaldring 38-40, Stuttgart 70569, Germany

2. German Aerospace Center (DLR), Institute of Low-Carbon Industrial Processes , Walther-Pauer-Straße 5, Cottbus 03046, Germany

Abstract

Abstract Trimethyl orthoformate (TMOF: HC(OCH3)3) has recently been examined as a viable biofuel. TMOF is a branched isomer of oxymethylene ether-2 (OME2) that, due to its high oxygen content and lack of direct carbon-carbon bonds, considerably reduces the formation of soot particles. To meet the challenges of a more flexible and sustainable power generation, a detailed understanding of its combustion properties is essential for its safe and efficient utilization, neat or in blends. In this work, two fundamental combustion properties of TMOF were studied: (i) Auto-ignition of TMOF/synthetic air mixtures (φ = 1.0; diluted 1:5 with N2) using the shock tube method at pressures of 1, 4, and 16 bar, and (ii) Laminar burning velocities of TMOF/air mixtures using the cone angle method at ambient and elevated pressures of 3 and 6 bar. Furthermore, the impact of TMOF addition to a gasoline surrogate (PRF90) on ignition delay times was studied using the shock tube method at φ = 1.0, 1:5 dilution with N2, T = 900–2000 K, and at 4 bar. The experimental data sets have been compared with predictions of the in-house chemical kinetic reaction mechanism (DLR concise mechanism) developed for interpreting the high-temperature combustion of a broad spectrum of different hydrocarbon fuels as well as oxygenated fuels, including TMOF. The results demonstrate that the ignition delay times of TMOF and OME2 are nearly identical for all pressures studied in the moderate-to high-temperature region. The results obtained for the blend indicate that ignition delay times of the TMOF/PRF90 blend are shorter than those of the primary reference fuel 90 (PRF90) at 4 bar. In the lean-to stoichiometric region, the results obtained for laminar burning velocities of TMOF and OME2 are similar. However, in the fuel-rich domain (φ > 1.0), laminar burning velocities for TMOF are noticeably lower, indicating a decreased reactivity. The model predictions based on the in-house model reveal a good agreement compared to the measured data within the experimental uncertainty ranges. In addition, sensitivity analyses regarding ignition delay times and laminar flame speeds were performed to better understand TMOF oxidation.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference54 articles.

1. Low Carbon Transport Strategy in Europe: A Critical Review;Int. J. Sustain. Transp.,2017

2. Commission Regulation (EU) No 459/2012 of 29 May 2012 Amending Regulation (EC) No 715/2007 of the European Parliament and of the Council and Commission Regulation (EC) No 692/2008 as Regards Emissions From Light Passenger and Commercial Vehicles (Euro 6) Text with EEA relevance (1);European Commission,2012

3. Comparative Well-to-Wheel Life Cycle Assessment of OME3-5 Synfuel Production Via the Power-to-Liquid Pathway;Sustainable Energy Fuels,2019

4. Combustion in the Future: The Importance of Chemistry;Proc. Combust. Inst.,2021

5. Recent Progress in the Application in Compression Ignition Engines and the Synthesis Technologies of Polyoxymethylene Dimethyl Ethers;Appl. Energy,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3