Azimuthal Instabilities of an Annular Combustor With Different Swirling Injectors

Author:

Rajendram Soundararajan Preethi1,Durox Daniel1,Renaud Antoine1,Candel Sébastien1

Affiliation:

1. Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay , 3, rue Joliot Curie, Gif-sur-Yvette cedex 91192, France

Abstract

Abstract Experiments are carried out on the laboratory-scale MICCA-Spray annular combustor to examine the effects of swirlers on combustion instabilities. This system comprises 16 spray-swirl injectors and gives rise to instabilities coupled by azimuthal modes. Five types of swirlers producing clockwise rotation and varying in swirl numbers and pressure drops are considered. These swirlers can be broadly categorized into two groups: lower-swirl and higher-swirl groups, based on their swirl numbers. An arrangement where clockwise and counterclockwise swirlers alternate is also studied. Experiments are performed systematically with liquid heptane at five levels of thermal power and six equivalence ratios. Results reveal that none of the swirlers in the lower-swirl category exhibit instability in the operating region considered, whereas the higher-swirl units feature strong azimuthal instabilities that trace an overall limit cycle envelope with a few short and random bursts. Among the higher-swirl group, a higher pressure drop swirler is associated with a broader instability map. This shows that the transition to instability mainly depends on the swirl number through its effect on the flame structure and that the pressure drop adds to further variations in amplitude and frequency of oscillation. The spin ratio time series indicate that the modes are of mixed type and that their distribution depends on the operating condition. On specifically comparing the spin ratio distribution between a full set of clockwise rotating (CR) swirlers and a configuration where clockwise and counterclockwise rotating swirlers (CCR) are alternatively placed, it is found that there is no definite statistical preference for spin ratio linked to the effect of bulk swirl. In some cases, however, the CCR configuration promotes a broader distribution of spin ratios centered around the standing mode (sr = 0) while the CR setup favors azimuthal modes spinning in the counterclockwise direction. An attempt is made to interpret the occurrence of instabilities by making use of flame describing functions (FDFs) measured in a single-injector combustor. It is found that the FDFs corresponding to the two swirler categories (lower-swirl and higher-swirl) are relatively distinct. The observed behavior is tentatively interpreted using an instability analysis in which the injector and upstream plenum are represented by an impedance that shifts the band of instability. The unstable behavior is then linked to the relative position of the FDF phase with respect to the instability band in the frequency range corresponding to the expected azimuthal mode frequency. The phase and gain of the FDF notably depend on the swirl number, and it is possible to distinguish, for the present configuration, a category of low swirl number injectors inducing stable operation and another category of high swirl number units leading to oscillations.

Funder

European Commission

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3