An Investigation on the Loss Generation Mechanisms Inside Different Centrifugal Compressor Volutes for Turbochargers

Author:

Tanganelli Andrea1,Balduzzi Francesco1,Bianchini Alessandro1,Cencherle Francesco2,De Luca Michele2,Marmorini Luca2,Ferrara Giovanni1

Affiliation:

1. Department of Industrial Engineering, University of Florence, Via di Santa Marta 3, Firenze 50139, Italy e-mail:

2. HPE COXA, Via R. Dalla Costa 620, Modena 41122, Italy e-mail:

Abstract

In centrifugal compressor design, the volute plays a key role in defining the overall efficiency and operating range of the stage. The flow at the impeller outlet is indeed characterized by a high kinetic energy content, which is first converted to potential energy in the diffuser downstream. The compressed gas is then collected by the volute at the cylindrical outlet section of the diffuser and directed to the intake piping, possibly with a further pressure recovery to enhance the stage performance. Due to the high flow speed at the volute inlet, the capability of ensuring the lowest amount of total pressure loss is pivotal to prevent a detriment of the machine efficiency. Moreover, the flow conditions change when the volute operates far from its design point: at mass flow rates lower than the design one, the flow becomes diffusive, while at higher mass flow rates the fluid is accelerated, thus leading to different loss-generation mechanisms. These phenomena are particularly relevant in turbocharger applications, where the compressor needs to cover a wide functioning range; moreover, in these applications, the definition of the volute shape is often driven also by space limitations imposed by the vehicle layout, leading to a variety of volute types. The present paper reports an analysis on the sources of thermodynamic irreversibilities occurring inside different volutes applied to a centrifugal compressor for turbocharging applications. Three demonstrative geometrical configurations are analyzed by means of three-dimensional (3D) numerical simulations using common boundary conditions to assess the overall volute performance and different loss mechanisms, which are evaluated in terms of the local entropy generation rate. The modification of the loss mechanisms in off-design conditions is also accounted for by investigating different mass flow rates. It is finally shown that the use of the entropy generation rate for the assessment of the irreversibilities is helpful to understand and localize the sources of loss in relation to the various flow structures.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference24 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3