High-Dimensional Uncertainty Quantification of High-Pressure Turbine Vane Based on Multifidelity Deep Neural Networks

Author:

Li Zhihui1,Montomoli Francesco1,Casari Nicola2,Pinelli Michele2

Affiliation:

1. Imperial College London UQ Laboratory, Department of Aeronautics, Faculty of Engineering, , London SW7 2AZ , UK

2. University of Ferrara Engineering Department, , Via Saragat, 1, Ferrara 44122 , Italy

Abstract

Abstract In this work, a new multifidelity (MF) uncertainty quantification (UQ) framework is presented and applied to the LS89 nozzle modified by fouling. Geometrical uncertainties significantly influence the aerodynamic performance of gas turbines. One representative example is given by the airfoil shape modified by fouling deposition, as in turbine nozzle vanes, which generates high-dimensional input uncertainties. However, the traditional UQ approaches suffer from the curse of dimensionality phenomenon in predicting the influence of high-dimensional uncertainties. Thus, a new approach based on multifidelity deep neural networks (MF-DNN) was proposed in this paper to solve the high-dimensional UQ problem. The basic idea of MF-DNN is to ensure the approximation capability of neural networks based on abundant low-fidelity (LF) data and few high-fidelity (HF) data. The prediction accuracy of MF-DNN was first evaluated using a 15-dimensional benchmark function. An affordable turbomachinery UQ platform was then built based on key components including the MF-DNN model, the sampling module, the parameterization module and the statistical processing module. The impact of fouling deposition on LS89 nozzle vane flow was investigated using the proposed UQ framework. In detail, the MF-DNN was fine-tuned based on bi-level numerical simulation results: the 2D Euler flow field as low-fidelity data and the 3D Reynolds-averaged Navier–Stokes (RANS) flow field as high-fidelity data. The UQ results show that the total pressure loss of LS89 vane is increased by at most 17.1% or reduced by at most 4.3%, while the mean value of the loss is increased by 3.4% compared to the baseline. The main reason for relative changes in turbine nozzle performance is that the geometric uncertainties induced by fouling deposition significantly alter the intensity of shock waves near the throat area and trailing edge. The developed UQ platform could provide a useful tool in the design and optimization of advanced turbomachinery considering high-dimensional input uncertainties.

Funder

European Commission

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3