The Effect of Density Variation on Heat Transfer in the Critical Region

Author:

Hsu Yih-Yun1,Smith J. M.1

Affiliation:

1. Northwestern University, Evanston, Ill.

Abstract

The heat-transfer coefficient between fluid and tube wall in turbulent flow depends upon the physical and thermal properties of the fluid. When density changes across the diameter of the tube are large (for example, when the fluid is near the critical point), the variable density can affect the transfer of momentum and heat. Equations are developed for predicting the magnitude of this effect on the heat-transfer coefficient. Deissler’s [5] expressions for the eddy diffusivity are employed in solving the equations for heat and momentum transfer. For flow in vertical tubes large density variations can also affect the heat transfer by inducing natural convection. By considering the influence of body forces on the shear stress, equations are derived to predict the effect of natural convection on the heat-transfer coefficient for turbulent flow. The results indicate that the effect is significant only for relatively high Grashof numbers and low Reynolds numbers. Such conditions may be encountered in flow of a fluid near its thermodynamic critical point. The derived equations are applied for carbon dioxide flow in the critical region under the conditions for which experimental data were measured by Bringer and Smith [2]. Because of the high Reynolds and low Grashof numbers, natural convection is not significant. However, the effect of the large density variations is found to be significant, and the predicted results agree well with the experimental data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3