Shear Buckling of Sandwich, Fiber Composite and Lattice Columns, Bearings, and Helical Springs: Paradox Resolved

Author:

Bazˇant Z. P.1

Affiliation:

1. McCormick School of Engineering and Applied Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

Abstract

As shown three decades ago, in situations where the initial stresses before buckling are not negligible compared to the elastic moduli, the geometrical dependence of the tangential moduli on the initial stresses must be taken into account in stability analysis, and the stability or bifurcation criteria have different forms for tangential moduli associated with different choices of the finite strain measure. So it has appeared paradoxical that, for sandwich columns, different but equally plausible assumptions yield different formulas, Engesser’s and Haringx’ formulas, even though the axial stress in the skins is negligible compared to the axial elastic modulus of the skins and the axial stress in the core is negligible compared to the shear modulus of the core. This apparent paradox is explained by variational energy analysis. It is shown that the shear stiffness of a sandwich column, provided by the core, generally depends on the axial force carried by the skins if that force is not negligible compared to the shear stiffness of the column (if the column is short). The Engesser-type, Haringx-type, and other possible formulas associated with different finite strain measures are all, in principle, equivalent, although a different shear stiffness of the core, depending linearly on the applied axial load, must be used for each. The Haringx-type formula, however, is most convenient because it represents the only case in which the shear modulus of the core can be considered to be independent of the axial force in the skins and to be equal to the shear modulus measured in simple shear tests (e.g., torsional test). Extensions of the analysis further show that Haringx’s formula is preferable for a highly orthotropic composite because a constant shear modulus of the soft matrix can be used for calculating the shear stiffness of the column, and further confirm that Haringx’s buckling formula with a constant shear stiffness is appropriate for helical springs and built-up columns (laced or battened).

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Biot, M. A., 1965, Mechanics of Incremental Deformations. John Wiley and Sons, New York.

2. Bazˇant, Z. P., and Cedolin, L., 1991, Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, Oxford University Press, New York (and 2nd updated Ed., Dover, New York, 2002).

3. Bazˇant, Z. P. , 1968, “Conditions of Deformation Instability of a Continuum and Their Application to Thick Slabs and a Half Space” (in Czech, with English summary), Stavebnı´cky Cˇasopis (SAV, Bratislava), 16, pp. 48–64.

4. Bazˇant, Z. P. , 1971, “A Correlation Study of Incremental Deformations and Stability of Continuous Bodies,” ASME J. Appl. Mech., 38, pp. 919–928.

5. Goodier, J. N., and Hsu, C. S., 1954, “Nonsinusoidal Buckling Modes of Sandwich Plates,” J. Aeronaut. Sci., 21, pp. 525–532.

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3