Artificial Intelligence Aided Design of Hull Form of Unmanned Underwater Vehicles for Minimization of Energy Consumption

Author:

Ao Yu12,Xu Jian3,Zhang Dapeng4,Li Shaofan2

Affiliation:

1. Harbin Engineering University College of Shipbuilding Engineering, , Harbin 150009 , China ;

2. University of California Department of Civil and Environmental Engineering, , Berkeley, CA 94720

3. Qingdao Innovation and Development Center of Harbin Engineering University , Harbin 150001, China

4. Harbin Engineering University College of Shipbuilding Engineering, , Harbin 150009 , China

Abstract

Abstract Designing an excellent hull to reduce the sailing path energy consumption of UUVs is crucial for improving the energy endurance of UUVs. However, path energy consumption-based UUV hull design requires a tremendous amount of calculation due to the frequent changes in relative velocity and attack angle between a UUV and ocean current. In order to address this issue, this work developed a data-driven design methodology for energy consumption-based UUV hull design using artificial intelligence-aided design (AIAD). The design methodology in this work combined a deep learning (DL) algorithm that predicts UUVs’ resistance with different hull shapes under different velocities and attack angles with the particle swarm optimization (PSO) algorithm for UUV hull design. We tested the proposed methodology in a path energy consumption-based experiment, where the optimized UUV hull showed an 8.8% reduction in path energy consumption compared with the initial UUV hull, and design costs were greatly reduced compared with the traditional computational fluid dynamics (CFD)-based methodology. Our work demonstrates that AIAD has the potential to solve UUV design problems previously thought to be too complex by offering a data-driven engineering shape (body surface) design method.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3